Exercise 2.4.6

Determine the equilibrium temperature distribution for the thin circular ring of Section 2.4.2:
(a) directly from the equilibrium problem (see Section 1.4)
(b) by computing the limit as $t \rightarrow \infty$ of the time-dependent problem

Solution

The governing equation for the temperature u in a thin wire of length $2 L$ is

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad-L<x<L, t>0
$$

Bending the wire into a circle, welding the ends together, and assuming perfect thermal contact results in periodic boundary conditions.

$$
u(-L, t)=u(L, t) \quad \frac{\partial u}{\partial x}(-L, t)=\frac{\partial u}{\partial x}(L, t)
$$

Perfect thermal contact implies that the temperature and the heat flux are continuous at $x= \pm L$. Even if there is an initial temperature distribution $u(x, 0)=f(x)$ in the ring, the temperature will eventually reach equilibrium as t gets large. The temperature can be thought to have a steady component and an unsteady component: $u(x, t)=U(x)+w(x, t)$.

$$
\begin{gathered}
\frac{\partial}{\partial t}[U(x)+w(x, t)]=k \frac{\partial^{2}}{\partial x^{2}}[U(x)+w(x, t)] \\
\frac{\partial w}{\partial t}=k\left(\frac{d^{2} U}{d x^{2}}+\frac{\partial^{2} w}{\partial x^{2}}\right)
\end{gathered}
$$

If we set

$$
\frac{d^{2} U}{d x^{2}}=0
$$

then the previous equation becomes a PDE solely for $w(x, t)$.

$$
\frac{\partial w}{\partial t}=k \frac{\partial^{2} w}{\partial x^{2}}
$$

The boundary conditions for u imply the following boundary conditions for U and w.

$$
\begin{aligned}
& u(-L, t)=u(L, t) \quad \rightarrow U(-L)+w(-L, t)=U(L)+w(L, t) \quad \rightarrow\left\{\begin{array}{c}
U(-L)=U(L) \\
w(-L, t)=w(L, t)
\end{array}\right. \\
& \frac{\partial u}{\partial x}(-L, t)=\frac{\partial u}{\partial x}(L, t) \quad \rightarrow \frac{d U}{d x}(-L)+\frac{\partial w}{\partial x}(-L, t)=\frac{d U}{d x}(L)+\frac{\partial w}{\partial x}(L, t) \quad \rightarrow \quad\left\{\begin{aligned}
\frac{d U}{d x}(-L) & =\frac{d U}{d x}(L) \\
\frac{\partial w}{\partial x}(-L, t) & =\frac{\partial w}{\partial x}(L, t)
\end{aligned}\right.
\end{aligned}
$$

Part (a)

Here we will solve the equilibrium problem.

$$
\frac{d^{2} U}{d x^{2}}=0
$$

Integrate both sides with respect to x.

$$
\frac{d U}{d x}=C_{1}
$$

Apply the second boundary condition to determine C_{1}.

$$
\frac{d U}{d x}(-L)=C_{1}=C_{1}=\frac{d U}{d x}(L)
$$

No information about C_{1} is learned. Integrate both sides of the previous equation with respect to x once more.

$$
U(x)=C_{1} x+C_{2}
$$

Now apply the first boundary condition.

$$
U(-L)=-C_{1} L+C_{2}=C_{1} L+C_{2}=U(L)
$$

We find that C_{2} remains arbitrary and that $C_{1}=0$. The equilibrium temperature is thus a constant.

$$
U(x)=C_{2}
$$

To determine this constant, integrate both sides of the original PDE with respect to x from $-L$ to L.

$$
\int_{-L}^{L} \frac{\partial u}{\partial t} d x=\int_{-L}^{L} k \frac{\partial^{2} u}{\partial x^{2}} d x
$$

Bring the time derivative in front of the integral on the left and evaluate the integral on the right.

$$
\frac{d}{d t} \int_{-L}^{L} u(x, t) d x=\left.k \frac{\partial u}{\partial x}\right|_{x=-L} ^{x=L}
$$

Note that a total derivative is used on the left because the integral in $d x$ wipes out the x variable.

$$
\frac{d}{d t} \int_{-L}^{L} u(x, t) d x=k\left[\frac{\partial u}{\partial x}(L, t)-\frac{\partial u}{\partial x}(-L, t)\right]
$$

Because of the periodic boundary conditions, the right side is zero.

$$
\frac{d}{d t} \int_{-L}^{L} u(x, t) d x=0
$$

Integrate both sides with respect to t.

$$
\begin{aligned}
\int_{-L}^{L} u(x, t) d x=\text { constant } \Rightarrow \int_{-L}^{L} u(x, 0) d x & =\int_{-L}^{L} u(x, \infty) d x \\
\int_{-L}^{L} f(x) d x & =\int_{-L}^{L} C_{2} d x \quad \rightarrow \quad C_{2}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x
\end{aligned}
$$

Part (b)

Here we will solve the time-dependent problem.

$$
\begin{aligned}
& \frac{\partial w}{\partial t}=k \frac{\partial^{2} w}{\partial x^{2}}, \quad-L<x<L, t>0 \\
& w(-L, t)=w(L, t) \\
& \frac{\partial w}{\partial x}(-L, t)=\frac{\partial w}{\partial x}(L, t)
\end{aligned}
$$

The initial condition for w is obtained from the one for u.

$$
\begin{aligned}
u(x, 0)=f(x) \rightarrow U(x)+w(x, 0)=f(x) \rightarrow \quad w(x, 0) & =f(x)-U(x) \\
& =f(x)-\frac{1}{2 L} \int_{-L}^{L} f(r) d r
\end{aligned}
$$

Because the PDE and its associated boundary conditions are linear and homogeneous, the method of separation of variables can be applied. Assume a product solution of the form $w(x, t)=X(x) T(t)$ and substitute it into the PDE

$$
\frac{\partial w}{\partial t}=k \frac{\partial^{2} w}{\partial x^{2}} \quad \rightarrow \quad \frac{\partial}{\partial t}[X(x) T(t)]=k \frac{\partial^{2}}{\partial x^{2}}[X(x) T(t)]
$$

and the boundary conditions.

$$
\begin{array}{lllll}
w(-L, t)=w(L, t) & \rightarrow & X(-L) T(t)=X(L) T(t) & \rightarrow & X(-L)=X(L) \\
w_{x}(-L, t)=w_{x}(L, t) & \rightarrow & X^{\prime}(-L) T(t)=X^{\prime}(L) T(t) & \rightarrow & X^{\prime}(-L)=X^{\prime}(L)
\end{array}
$$

Separate variables in the PDE.

$$
X \frac{d T}{d t}=k T \frac{d^{2} X}{d x^{2}}
$$

Divide both sides by $k X(x) T(t)$. (Note that the final answer would be the same if k were kept on the right. Normally constants are grouped with t.)

$$
\underbrace{\frac{1}{k T} \frac{d T}{d t}}_{\text {function of } t}=\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{\text {function of } x}
$$

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

$$
\frac{1}{k T} \frac{d T}{d t}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in t.

$$
\left.\begin{array}{l}
\frac{1}{k T} \frac{d T}{d t}=\lambda \\
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\lambda
\end{array}\right\}
$$

Values of λ for which there exist nontrivial solutions to the boundary problem for X are called the eigenvalues, and the solutions themselves are called the eigenfunctions. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for X becomes

$$
X^{\prime \prime}=\alpha^{2} X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{3} \cosh \alpha x+C_{4} \sinh \alpha x
$$

Take a derivative of it.

$$
X^{\prime}(x)=\alpha\left(C_{3} \sinh \alpha x+C_{4} \cosh \alpha x\right)
$$

Apply the boundary conditions to obtain a system of equations involving C_{3} and C_{4}.

$$
\begin{aligned}
& X(-L)=C_{3} \cosh \alpha L-C_{4} \sinh \alpha L=C_{3} \cosh \alpha L+C_{4} \sinh \alpha L=X(L) \\
& X^{\prime}(-L)=\alpha\left(-C_{3} \sinh \alpha L+C_{4} \cosh \alpha L\right)=\alpha\left(C_{3} \sinh \alpha L+C_{4} \cosh \alpha L\right)=X^{\prime}(L) \\
& \left\{\begin{array}{l}
-C_{4} \sinh \alpha L=C_{4} \sinh \alpha L \\
-C_{3} \sinh \alpha L=C_{3} \sinh \alpha L
\end{array}\right.
\end{aligned}
$$

No nonzero value of α gives zero, so the only way these equations are satisfied is if $C_{3}=0$ and $C_{4}=0$. The trivial solution $X(x)=0$ is obtained, so there are no positive eigenvalues. Suppose secondly that λ is zero: $\lambda=0$. The ODE for X becomes

$$
X^{\prime \prime}=0
$$

Integrate both sides with respect to x.

$$
X^{\prime}=C_{5}
$$

Apply the second boundary condition to determine C_{5}.

$$
X^{\prime}(-L)=C_{5}=C_{5}=X^{\prime}(L)
$$

No information is learned about C_{5}. Integrate both sides of the previous equation with respect to x once more.

$$
X(x)=C_{5} x+C_{6}
$$

Now apply the first boundary condition.

$$
X(-L)=-C_{5} L+C_{6}=C_{5} L+C_{6}=X(L)
$$

We find that $C_{5}=0$ and C_{6} remains arbitrary.

$$
X(x)=C_{6}
$$

Because $X(x)$ is nonzero, zero is an eigenvalue; the eigenfunction associated with it is $X_{0}(x)=1$. With $\lambda=0$, the ODE for T becomes

$$
T^{\prime}=0 \quad \Rightarrow \quad T(t)=\text { constant } .
$$

Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for X becomes

$$
X^{\prime \prime}=-\beta^{2} X
$$

The general solution is written in terms of sine and cosine.

$$
X(x)=C_{7} \cos \beta x+C_{8} \sin \beta x
$$

Take a derivative of it.

$$
X^{\prime}(x)=\beta\left(-C_{7} \sin \beta x+C_{8} \cos \beta x\right)
$$

Apply the boundary conditions to obtain a system of equations involving C_{7} and C_{8}.

$$
\begin{aligned}
& X(-L)=C_{7} \cos \beta L-C_{8} \sin \beta L=C_{7} \cos \beta L+C_{8} \sin \beta L=X(L) \\
& X^{\prime}(-L)=\beta\left(C_{7} \sin \beta L+C_{8} \cos \beta L\right)=\beta\left(-C_{7} \sin \beta L+C_{8} \cos \beta L\right)=X^{\prime}(L) \\
& \qquad\left\{\begin{array}{r}
-C_{8} \sin \beta L=C_{8} \sin \beta L \\
C_{7} \sin \beta L=-C_{7} \sin \beta L
\end{array}\right.
\end{aligned}
$$

These equations are satisfied if

$$
\begin{aligned}
\sin \beta L & =0 \\
\beta L & =n \pi, \quad n=1,2, \ldots \\
\beta_{n} & =\frac{n \pi}{L} .
\end{aligned}
$$

The negative eigenvalues are $\lambda=-n^{2} \pi^{2} / L^{2}$, and the eigenfunctions associated with them are

$$
X(x)=C_{7} \cos \beta x+C_{8} \sin \beta x \quad \rightarrow \quad X_{n}(x)=C_{7} \cos \frac{n \pi x}{L}+C_{8} \sin \frac{n \pi x}{L}
$$

With this value for λ, the ODE for T becomes

$$
\frac{d T}{d t}=-k \frac{n^{2} \pi^{2}}{L^{2}} T
$$

The general solution is written in terms of the exponential function.

$$
T(t)=C_{9} \exp \left(-k \frac{n^{2} \pi^{2}}{L^{2}} t\right) \quad \rightarrow \quad T_{n}(t)=\exp \left(-k \frac{n^{2} \pi^{2}}{L^{2}} t\right)
$$

According to the principle of superposition, the general solution to the PDE for w is a linear combination of $X(x) T(t)$ over all the eigenvalues.

$$
w(x, t)=A_{0}+\sum_{n=1}^{\infty} \exp \left(-k \frac{n^{2} \pi^{2}}{L^{2}} t\right)\left(A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L}\right)
$$

Use the initial condition now to determine the constants A_{0}, A_{n}, and B_{n}.

$$
w(x, 0)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L}\right)=f(x)-\frac{1}{2 L} \int_{-L}^{L} f(r) d r
$$

To find A_{0}, integrate both sides with respect to x from $-L$ to L.

$$
\int_{-L}^{L}\left[A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L}\right)\right] d x=\int_{-L}^{L}\left[f(x)-\frac{1}{2 L} \int_{-L}^{L} f(r) d r\right] d x
$$

Split up the integrals and bring the constants in front.

$$
A_{0} \int_{-L}^{L} d x+\sum_{n=1}^{\infty}(A_{n} \underbrace{\int_{-L}^{L} \cos \frac{n \pi x}{L} d x}_{=0}+B_{n} \underbrace{\int_{-L}^{L} \sin \frac{n \pi x}{L} d x}_{=0})=\int_{-L}^{L} f(x) d x-\frac{1}{2 L}\left(\int_{-L}^{L} d x\right) \int_{-L}^{L} f(r) d r
$$

Evaluate the integrals.

$$
\begin{aligned}
A_{0}(2 L) & =\int_{-L}^{L} f(x) d x-\frac{1}{2 L}(2 L) \int_{-L}^{L} f(r) d r \\
& =\int_{-L}^{L} f(x) d x-\int_{-L}^{L} f(r) d r \\
& =0
\end{aligned}
$$

So then

$$
A_{0}=0
$$

and

$$
w(x, t)=\sum_{n=1}^{\infty} \exp \left(-k \frac{n^{2} \pi^{2}}{L^{2}} t\right)\left(A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L}\right) .
$$

Because of the decaying exponential function, the limit of $w(x, t)$ as $t \rightarrow \infty$ is zero. Therefore,

$$
\begin{aligned}
\lim _{t \rightarrow \infty} u(x, t) & =\lim _{t \rightarrow \infty}[U(x)+w(x, t)] \\
& =U(x)+\lim _{t \rightarrow \infty} w(x, t) \\
& =\frac{1}{2 L} \int_{-L}^{L} f(r) d r+0 \\
& =\frac{1}{2 L} \int_{-L}^{L} f(r) d r .
\end{aligned}
$$

The equilibrium temperature is the average of the initial temperature distribution in the ring.

