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Exercise 2.4.6

Determine the equilibrium temperature distribution for the thin circular ring of Section 2.4.2:

(a) directly from the equilibrium problem (see Section 1.4)

(b) by computing the limit as t→∞ of the time-dependent problem

Solution

The governing equation for the temperature u in a thin wire of length 2L is

∂u

∂t
= k

∂2u

∂x2
, −L < x < L, t > 0.

Bending the wire into a circle, welding the ends together, and assuming perfect thermal contact
results in periodic boundary conditions.

u(−L, t) = u(L, t)
∂u

∂x
(−L, t) = ∂u

∂x
(L, t)

Perfect thermal contact implies that the temperature and the heat flux are continuous at x = ±L.
Even if there is an initial temperature distribution u(x, 0) = f(x) in the ring, the temperature will
eventually reach equilibrium as t gets large. The temperature can be thought to have a steady
component and an unsteady component: u(x, t) = U(x) + w(x, t).

∂

∂t
[U(x) + w(x, t)] = k

∂2

∂x2
[U(x) + w(x, t)]

∂w

∂t
= k

(
d2U

dx2
+
∂2w

∂x2

)
If we set

d2U

dx2
= 0,

then the previous equation becomes a PDE solely for w(x, t).

∂w

∂t
= k

∂2w

∂x2

The boundary conditions for u imply the following boundary conditions for U and w.

u(−L, t) = u(L, t) → U(−L) + w(−L, t) = U(L) + w(L, t) →

{
U(−L) = U(L)

w(−L, t) = w(L, t)

∂u

∂x
(−L, t) = ∂u

∂x
(L, t) → dU

dx
(−L) + ∂w

∂x
(−L, t) = dU

dx
(L) +

∂w

∂x
(L, t) →


dU

dx
(−L) = dU

dx
(L)

∂w

∂x
(−L, t) = ∂w

∂x
(L, t)
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Part (a)

Here we will solve the equilibrium problem.

d2U

dx2
= 0

Integrate both sides with respect to x.
dU

dx
= C1

Apply the second boundary condition to determine C1.

dU

dx
(−L) = C1 = C1 =

dU

dx
(L)

No information about C1 is learned. Integrate both sides of the previous equation with respect to
x once more.

U(x) = C1x+ C2

Now apply the first boundary condition.

U(−L) = −C1L+ C2 = C1L+ C2 = U(L)

We find that C2 remains arbitrary and that C1 = 0. The equilibrium temperature is thus a
constant.

U(x) = C2

To determine this constant, integrate both sides of the original PDE with respect to x from −L to
L. ˆ L

−L

∂u

∂t
dx =

ˆ L

−L
k
∂2u

∂x2
dx

Bring the time derivative in front of the integral on the left and evaluate the integral on the right.

d

dt

ˆ L

−L
u(x, t) dx = k

∂u

∂x

∣∣∣∣x=L

x=−L

Note that a total derivative is used on the left because the integral in dx wipes out the x variable.

d

dt

ˆ L

−L
u(x, t) dx = k

[
∂u

∂x
(L, t)− ∂u

∂x
(−L, t)

]
Because of the periodic boundary conditions, the right side is zero.

d

dt

ˆ L

−L
u(x, t) dx = 0

Integrate both sides with respect to t.

ˆ L

−L
u(x, t) dx = constant ⇒

ˆ L

−L
u(x, 0) dx =

ˆ L

−L
u(x,∞) dx

ˆ L

−L
f(x) dx =

ˆ L

−L
C2 dx → C2 =

1

2L

ˆ L

−L
f(x) dx
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Part (b)

Here we will solve the time-dependent problem.

∂w

∂t
= k

∂2w

∂x2
, −L < x < L, t > 0

w(−L, t) = w(L, t)

∂w

∂x
(−L, t) = ∂w

∂x
(L, t)

The initial condition for w is obtained from the one for u.

u(x, 0) = f(x) → U(x) + w(x, 0) = f(x) → w(x, 0) = f(x)− U(x)

= f(x)− 1

2L

ˆ L

−L
f(r) dr

Because the PDE and its associated boundary conditions are linear and homogeneous, the
method of separation of variables can be applied. Assume a product solution of the form
w(x, t) = X(x)T (t) and substitute it into the PDE

∂w

∂t
= k

∂2w

∂x2
→ ∂

∂t
[X(x)T (t)] = k

∂2

∂x2
[X(x)T (t)]

and the boundary conditions.

w(−L, t) = w(L, t) → X(−L)T (t) = X(L)T (t) → X(−L) = X(L)

wx(−L, t) = wx(L, t) → X ′(−L)T (t) = X ′(L)T (t) → X ′(−L) = X ′(L)

Separate variables in the PDE.

X
dT

dt
= kT

d2X

dx2

Divide both sides by kX(x)T (t). (Note that the final answer would be the same if k were kept on
the right. Normally constants are grouped with t.)

1

kT

dT

dt︸ ︷︷ ︸
function of t

=
1

X

d2X

dx2︸ ︷︷ ︸
function of x

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

1

kT

dT

dt
=

1

X

d2X

dx2
= λ

As a result of applying the method of separation of variables, the PDE has reduced to two
ODEs—one in x and one in t.

1

kT

dT

dt
= λ

1

X

d2X

dx2
= λ


Values of λ for which there exist nontrivial solutions to the boundary problem for X are called
the eigenvalues, and the solutions themselves are called the eigenfunctions. Suppose first that λ is
positive: λ = α2. The ODE for X becomes

X ′′ = α2X.
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The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

X(x) = C3 coshαx+ C4 sinhαx

Take a derivative of it.
X ′(x) = α(C3 sinhαx+ C4 coshαx)

Apply the boundary conditions to obtain a system of equations involving C3 and C4.

X(−L) = C3 coshαL− C4 sinhαL = C3 coshαL+ C4 sinhαL = X(L)

X ′(−L) = α(−C3 sinhαL+ C4 coshαL) = α(C3 sinhαL+ C4 coshαL) = X ′(L){
−C4 sinhαL = C4 sinhαL

−C3 sinhαL = C3 sinhαL

No nonzero value of α gives zero, so the only way these equations are satisfied is if C3 = 0 and
C4 = 0. The trivial solution X(x) = 0 is obtained, so there are no positive eigenvalues. Suppose
secondly that λ is zero: λ = 0. The ODE for X becomes

X ′′ = 0.

Integrate both sides with respect to x.
X ′ = C5

Apply the second boundary condition to determine C5.

X ′(−L) = C5 = C5 = X ′(L)

No information is learned about C5. Integrate both sides of the previous equation with respect to
x once more.

X(x) = C5x+ C6

Now apply the first boundary condition.

X(−L) = −C5L+ C6 = C5L+ C6 = X(L)

We find that C5 = 0 and C6 remains arbitrary.

X(x) = C6

Because X(x) is nonzero, zero is an eigenvalue; the eigenfunction associated with it is X0(x) = 1.
With λ = 0, the ODE for T becomes

T ′ = 0 ⇒ T (t) = constant.

Suppose thirdly that λ is negative: λ = −β2. The ODE for X becomes

X ′′ = −β2X.

The general solution is written in terms of sine and cosine.

X(x) = C7 cosβx+ C8 sinβx
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Take a derivative of it.
X ′(x) = β(−C7 sinβx+ C8 cosβx)

Apply the boundary conditions to obtain a system of equations involving C7 and C8.

X(−L) = C7 cosβL− C8 sinβL = C7 cosβL+ C8 sinβL = X(L)

X ′(−L) = β(C7 sinβL+ C8 cosβL) = β(−C7 sinβL+ C8 cosβL) = X ′(L){
−C8 sinβL = C8 sinβL

C7 sinβL = −C7 sinβL

These equations are satisfied if

sinβL = 0

βL = nπ, n = 1, 2, . . .

βn =
nπ

L
.

The negative eigenvalues are λ = −n2π2/L2, and the eigenfunctions associated with them are

X(x) = C7 cosβx+ C8 sinβx → Xn(x) = C7 cos
nπx

L
+ C8 sin

nπx

L
.

With this value for λ, the ODE for T becomes

dT

dt
= −kn

2π2

L2
T.

The general solution is written in terms of the exponential function.

T (t) = C9 exp

(
−kn

2π2

L2
t

)
→ Tn(t) = exp

(
−kn

2π2

L2
t

)
According to the principle of superposition, the general solution to the PDE for w is a linear
combination of X(x)T (t) over all the eigenvalues.

w(x, t) = A0 +

∞∑
n=1

exp

(
−kn

2π2

L2
t

)(
An cos

nπx

L
+Bn sin

nπx

L

)
Use the initial condition now to determine the constants A0, An, and Bn.

w(x, 0) = A0 +
∞∑
n=1

(
An cos

nπx

L
+Bn sin

nπx

L

)
= f(x)− 1

2L

ˆ L

−L
f(r) dr

To find A0, integrate both sides with respect to x from −L to L.

ˆ L

−L

[
A0 +

∞∑
n=1

(
An cos

nπx

L
+Bn sin

nπx

L

)]
dx =

ˆ L

−L

[
f(x)− 1

2L

ˆ L

−L
f(r) dr

]
dx

Split up the integrals and bring the constants in front.

A0

ˆ L

−L
dx+

∞∑
n=1

(
An

ˆ L

−L
cos

nπx

L
dx︸ ︷︷ ︸

= 0

+Bn

ˆ L

−L
sin

nπx

L
dx︸ ︷︷ ︸

= 0

)
=

ˆ L

−L
f(x) dx− 1

2L

(ˆ L

−L
dx

) ˆ L

−L
f(r) dr
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Evaluate the integrals.

A0(2L) =

ˆ L

−L
f(x) dx− 1

2L
(2L)

ˆ L

−L
f(r) dr

=

ˆ L

−L
f(x) dx−

ˆ L

−L
f(r) dr

= 0

So then
A0 = 0

and

w(x, t) =
∞∑
n=1

exp

(
−kn

2π2

L2
t

)(
An cos

nπx

L
+Bn sin

nπx

L

)
.

Because of the decaying exponential function, the limit of w(x, t) as t→∞ is zero. Therefore,

lim
t→∞

u(x, t) = lim
t→∞

[U(x) + w(x, t)]

= U(x) + lim
t→∞

w(x, t)

=
1

2L

ˆ L

−L
f(r) dr + 0

=
1

2L

ˆ L

−L
f(r) dr.

The equilibrium temperature is the average of the initial temperature distribution in the ring.
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